Measuring Stochastic Long-Range Dependence Calculating the Hurst Exponent of the S&P 500

Ajay Dugar

Departments of Economics and Mathematics

University of Illinois Economics Research Symposium 2018

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

Outline

- Common Assumptions
- Initial Analysis

2 Findings

- Distributions
- Calculations

2 Findings

- Distributions
- Calculations

Findings

Summary

Common Assumptions

Common Assumptions The Foundation of Modern Financial Theory

What are the foundational assumptions when it comes to market research, and where do they come from?

 Changes in markets follow a Gaussian random walk (Bachelier)

Findings

Summary

Common Assumptions

Common Assumptions The Foundation of Modern Financial Theory

What are the foundational assumptions when it comes to market research, and where do they come from?

- Changes in markets follow a Gaussian random walk (Bachelier)
- Given this normal distribution, we can calculate risk and value of assets, i.e. β and CAPM (Markowitz and Sharpe)

Findings

Summary

Common Assumptions

Common Assumptions The Foundation of Modern Financial Theory

What are the foundational assumptions when it comes to market research, and where do they come from?

- Changes in markets follow a Gaussian random walk (Bachelier)
- Given this normal distribution, we can calculate risk and value of assets, i.e. β and CAPM (Markowitz and Sharpe)
- Knowing the value and risk of an asset, we can determine its voltatility (Black and Scholes)

Findings

Summary

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Common Assumptions

Common Assumptions The Foundation of Modern Financial Theory

What are the foundational assumptions when it comes to market research, and where do they come from?

- Changes in markets follow a Gaussian random walk (Bachelier)
- Given this normal distribution, we can calculate risk and value of assets, i.e. β and CAPM (Markowitz and Sharpe)
- Knowing the value and risk of an asset, we can determine its voltatility (Black and Scholes)
- With these findings, assuming common rationality, all asset prices reflect complete information, i.e. EMH (Fama)

Outline

2 Findings

- Distributions
- Calculations

• We first observe that these orthodox methodologies stem from Bachelier's work with Parisian bonds in the late 1800s

- We first observe that these orthodox methodologies stem from Bachelier's work with Parisian bonds in the late 1800s
- If these underlying assumptions about market volatility are wrong, the whole system comes crumbling down

- We first observe that these orthodox methodologies stem from Bachelier's work with Parisian bonds in the late 1800s
- If these underlying assumptions about market volatility are wrong, the whole system comes crumbling down
- Benoit Mandelbrot, Eugene Fama's thesis advisor, and Nobel laureate Kahneman both strongly refute the validity of the EMH

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

- We first observe that these orthodox methodologies stem from Bachelier's work with Parisian bonds in the late 1800s
- If these underlying assumptions about market volatility are wrong, the whole system comes crumbling down
- Benoit Mandelbrot, Eugene Fama's thesis advisor, and Nobel laureate Kahneman both strongly refute the validity of the EMH
- The Great Recession and behavioral economics both make compelling cases for the widespread underestimation of risk and rationality in economic analysis

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

- We first observe that these orthodox methodologies stem from Bachelier's work with Parisian bonds in the late 1800s
- If these underlying assumptions about market volatility are wrong, the whole system comes crumbling down
- Benoit Mandelbrot, Eugene Fama's thesis advisor, and Nobel laureate Kahneman both strongly refute the validity of the EMH
- The Great Recession and behavioral economics both make compelling cases for the widespread underestimation of risk and rationality in economic analysis
- Where do we go from here?

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

- We first observe that these orthodox methodologies stem from Bachelier's work with Parisian bonds in the late 1800s
- If these underlying assumptions about market volatility are wrong, the whole system comes crumbling down
- Benoit Mandelbrot, Eugene Fama's thesis advisor, and Nobel laureate Kahneman both strongly refute the validity of the EMH
- The Great Recession and behavioral economics both make compelling cases for the widespread underestimation of risk and rationality in economic analysis
- Where do we go from here? Fractal analysis

Outline

Economic Assumptions

- Common Assumptions
- Initial Analysis

Calculations

What Does Change Look Like?

• Almost all models use the assumption of independent random walks

What Does Change Look Like?

- Almost all models use the assumption of independent random walks
- This results in a Gaussian change distribution

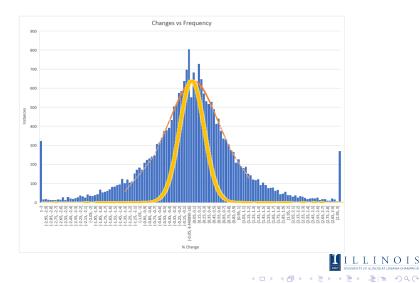
What Does Change Look Like?

- Almost all models use the assumption of independent random walks
- This results in a Gaussian change distribution
- Taking a look at real data, we'll test this assumption and find a better fit

INO

Distributions

Choosing a Distribution



Cauchy Distribution

• The normal distribution fails to sufficiently account for extreme changes

Cauchy Distribution

- The normal distribution fails to sufficiently account for extreme changes
- If we took the two most extreme events (The Emergency Banking Act increase and the Black Monday Crash), and sampled a random Gaussian change every second, we would expect both of these to occur approximately every

10¹⁰¹ years

Cauchy Distribution

- The normal distribution fails to sufficiently account for extreme changes
- If we took the two most extreme events (The Emergency Banking Act increase and the Black Monday Crash), and sampled a random Gaussian change every second, we would expect both of these to occur approximately every

10¹⁰¹ years

• Thus, the Cauchy distribution is a better fit for the long, fat tailed data

Outline

- Economic Assumptions
 Common Assumptions
 - Initial Analysis

Calculations

Fractal Dimension

$$C^d_H(S):=\infigg\{\sum_i r^d_i: ext{ there is a cover of }S ext{ by balls with radii }r_i>0igg\} \ \dim_{\mathrm{H}}(X):=\inf\{d\geq 0: C^d_H(X)=0\}$$

• Above, we have the definition of the Hausdorff Dimension, D

Fractal Dimension

$$C^d_H(S):=\infigg\{\sum_i r^d_i: ext{ there is a cover of }S ext{ by balls with radii }r_i>0igg\},\ \dim_{\mathrm{H}}(X):=\inf\{d\geq 0: C^d_H(X)=0\}$$

- Above, we have the definition of the Hausdorff Dimension, D
- Whenever the value of this measure exceeds that of the topological dimension of a space, we can consider this space a fractal

Fractal Dimension

$$C^d_H(S):=\infigg\{\sum_i r^d_i: ext{ there is a cover of }S ext{ by balls with radii }r_i>0igg\},\ \dim_{\mathrm{H}}(X):=\inf\{d\geq 0: C^d_H(X)=0\}$$

- Above, we have the definition of the Hausdorff Dimension, D
- Whenever the value of this measure exceeds that of the topological dimension of a space, we can consider this space a fractal
- Essentially, this dimension tells us how spaces scale

Findings ○○○○○●○○○○○○○○○

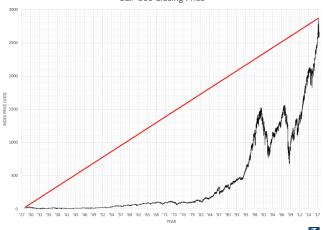
Calculations

Scaling

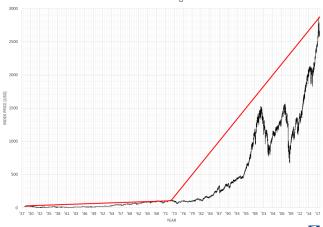
Scaling

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

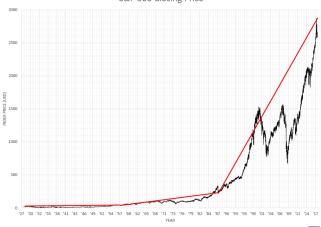
Curve Fitting



Curve Fitting



Curve Fitting

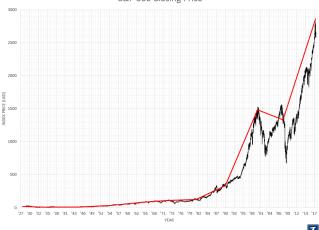


シック・1回、4回>4回>4回>4回>4回>

Curve Fitting

NO

◆□> ◆□> ◆三> ◆三> 三三 のへの



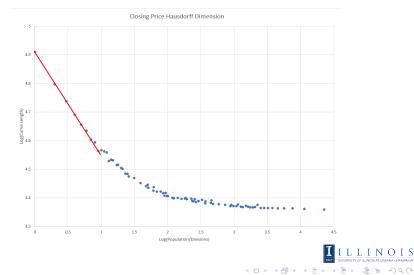
S&P 500 Closing Price

Findings

I N O

Calculations

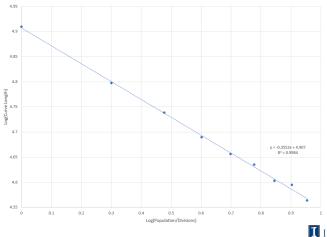
Curve Fitting



Curve Fitting

ΙΝΟ

シック・1回、4回>4回>4回>4回>4回>

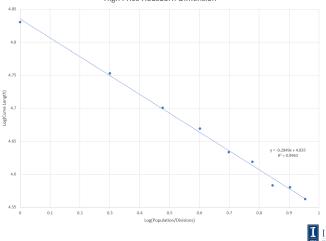


Closing Price Hausdorff Dimension

Curve Fitting

ΙΝΟ

シック・1回、4回>4回>4回>4回>4回>

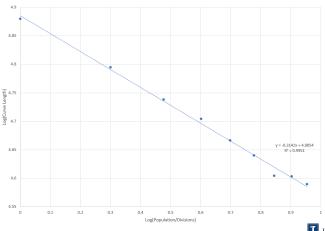


High Price Hausdorff Dimension

Curve Fitting

ΙΝΟ

シック・1回、4回>4回>4回>4回>4回>



Low Price Hausdorff Dimension

Hausdorff Dimension and Hurst Exponent

• The closing price SP 500 has a Hausdorff dimension of 1.3553 ($D_{high} = 1.2849, D_{low} = 1.3142$)

Hausdorff Dimension and Hurst Exponent

- The closing price SP 500 has a Hausdorff dimension of 1.3553 ($D_{high} = 1.2849$, $D_{low} = 1.3142$)
- This value corresponds to a Hurst exponent of 0.6447 (H_{high} = 0.7151, H_{low} = 0.6858)

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

Calculations

Hausdorff Dimension and Hurst Exponent

- The closing price SP 500 has a Hausdorff dimension of 1.3553 ($D_{high} = 1.2849$, $D_{low} = 1.3142$)
- This value corresponds to a Hurst exponent of 0.6447 (H_{high} = 0.7151, H_{low} = 0.6858)
- Comparing this to the Hurst exponent value of the closing price computed by Bayraktar, et. al, of 0.6156 ± 0.0531 , we see that these results are consistent

• This Hausdorff dimension value indicates significant roughness and complexity

- This Hausdorff dimension value indicates significant roughness and complexity
- This Hurst exponent value indicates non-trivial long-term positive autocorrelation

- This Hausdorff dimension value indicates significant roughness and complexity
- This Hurst exponent value indicates non-trivial long-term positive autocorrelation
- Markets are more erratic and random than conventional wisdom suggests

- This Hausdorff dimension value indicates significant roughness and complexity
- This Hurst exponent value indicates non-trivial long-term positive autocorrelation
- Markets are more erratic and random than conventional wisdom suggests
- Next Steps

- This Hausdorff dimension value indicates significant roughness and complexity
- This Hurst exponent value indicates non-trivial long-term positive autocorrelation
- Markets are more erratic and random than conventional wisdom suggests
- Next Steps
 - Increase the data set size to improve accuracy of these findings

- This Hausdorff dimension value indicates significant roughness and complexity
- This Hurst exponent value indicates non-trivial long-term positive autocorrelation
- Markets are more erratic and random than conventional wisdom suggests
- Next Steps
 - Increase the data set size to improve accuracy of these findings
 - Apply this curve fitting algorithm to different market data to determine better measures of volatility and risk

References

B. Mandelbrot

How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science, 1967.

E. Bayraktar, H. Poor, & K. Sircar Estimating the Fractal Dimension of the S&P 500 Index using Wavelet Analysis Princeton University, 2003.

R. Hudson & B. Mandelbrot The Misbehavior of Markets Basic Books, 2004.

